Introduction of Qwen2-VL-7B-Instruct-unsloth-bnb-4bit
Model Details of Qwen2-VL-7B-Instruct-unsloth-bnb-4bit
Unsloth's
Dynamic 4-bit Quants
selectively avoids quantizing certain parameters, greatly improving accuracy while keeping VRAM usage similar to BnB 4-bit.
See our full collection of Unsloth quants on
Hugging Face here.
Finetune Llama 3.2, Qwen 2.5, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
For more details on the model, please go to Qwen's original
model card
✨ Finetune for Free
All notebooks are
beginner friendly
! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
Special Thanks
A huge thank you to the Qwen team for creating and releasing these models.
What’s New in Qwen2-VL?
Key Enhancements:
SoTA understanding of images of various resolution & ratio
: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
Understanding videos of 20min+
: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc.
Agent that can operate your mobiles, robots, etc.
: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions.
Multilingual Support
: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc.
Model Architecture Updates:
Naive Dynamic Resolution
: Unlike before, Qwen2-VL can handle arbitrary image resolutions, mapping them into a dynamic number of visual tokens, offering a more human-like visual processing experience.
Multimodal Rotary Position Embedding (M-ROPE)
: Decomposes positional embedding into parts to capture 1D textual, 2D visual, and 3D video positional information, enhancing its multimodal processing capabilities.
We have three models with 2, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2-VL model. For more information, visit our
Blog
and
GitHub
.
Evaluation
Image Benchmarks
Benchmark
InternVL2-8B
MiniCPM-V 2.6
GPT-4o-mini
Qwen2-VL-7B
MMMU
val
51.8
49.8
60
54.1
DocVQA
test
91.6
90.8
-
94.5
InfoVQA
test
74.8
-
-
76.5
ChartQA
test
83.3
-
-
83.0
TextVQA
val
77.4
80.1
-
84.3
OCRBench
794
852
785
845
MTVQA
-
-
-
26.3
VCR
en easy
-
73.88
83.60
89.70
VCR
zh easy
-
10.18
1.10
59.94
RealWorldQA
64.4
-
-
70.1
MME
sum
2210.3
2348.4
2003.4
2326.8
MMBench-EN
test
81.7
-
-
83.0
MMBench-CN
test
81.2
-
-
80.5
MMBench-V1.1
test
79.4
78.0
76.0
80.7
MMT-Bench
test
-
-
-
63.7
MMStar
61.5
57.5
54.8
60.7
MMVet
GPT-4-Turbo
54.2
60.0
66.9
62.0
HallBench
avg
45.2
48.1
46.1
50.6
MathVista
testmini
58.3
60.6
52.4
58.2
MathVision
-
-
-
16.3
Video Benchmarks
Benchmark
Internvl2-8B
LLaVA-OneVision-7B
MiniCPM-V 2.6
Qwen2-VL-7B
MVBench
66.4
56.7
-
67.0
PerceptionTest
test
-
57.1
-
62.3
EgoSchema
test
-
60.1
-
66.7
Video-MME
wo/w subs
54.0/56.9
58.2/-
60.9/63.6
63.3
/
69.0
Requirements
The code of Qwen2-VL has been in the latest Hugging face transformers and we advise you to build from source with command
pip install git+https://github.com/huggingface/transformers
, or you might encounter the following error:
KeyError: 'qwen2_vl'
Quickstart
We offer a toolkit to help you handle various types of visual input more conveniently. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
pip install qwen-vl-utils
Here we show a code snippet to show you how to use the chat model with
transformers
and
qwen_vl_utils
:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.# model = Qwen2VLForConditionalGeneration.from_pretrained(# "Qwen/Qwen2-VL-7B-Instruct",# torch_dtype=torch.bfloat16,# attn_implementation="flash_attention_2",# device_map="auto",# )# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.# min_pixels = 256*28*28# max_pixels = 1280*28*28# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids inzip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Without qwen_vl_utils
from PIL import Image
import requests
import torch
from torchvision import io
from typing importDictfrom transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
# Load the model in half-precision on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# Image
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{
"type": "image",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preprocess the inputs
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
inputs = processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids inzip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text)
Multi image inference
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "Identify the similarities between these images."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids inzip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Video inference
# Messages containing a images list as a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": [
"file:///path/to/frame1.jpg",
"file:///path/to/frame2.jpg",
"file:///path/to/frame3.jpg",
"file:///path/to/frame4.jpg",
],
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file:///path/to/video1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids inzip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Batch inference
# Sample messages for batch inference
messages1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "What are the common elements in these pictures?"},
],
}
]
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages1]
# Preparation for batch inference
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids inzip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
More Usage Tips
For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.## Local file path
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Image URL
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "http://path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Base64 encoded image
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "data:image;base64,/9j/..."},
{"type": "text", "text": "Describe this image."},
],
}
]
Image Resolution for performance boost
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
While Qwen2-VL are applicable to a wide range of visual tasks, it is equally important to understand its limitations. Here are some known restrictions:
Lack of Audio Support: The current model does
not comprehend audio information
within videos.
Data timeliness: Our image dataset is
updated until June 2023
, and information subsequent to this date may not be covered.
Constraints in Individuals and Intellectual Property (IP): The model's capacity to recognize specific individuals or IPs is limited, potentially failing to comprehensively cover all well-known personalities or brands.
Limited Capacity for Complex Instruction: When faced with intricate multi-step instructions, the model's understanding and execution capabilities require enhancement.
Insufficient Counting Accuracy: Particularly in complex scenes, the accuracy of object counting is not high, necessitating further improvements.
Weak Spatial Reasoning Skills: Especially in 3D spaces, the model's inference of object positional relationships is inadequate, making it difficult to precisely judge the relative positions of objects.
These limitations serve as ongoing directions for model optimization and improvement, and we are committed to continually enhancing the model's performance and scope of application.
Citation
If you find our work helpful, feel free to give us a cite.
@article{Qwen2VL,
title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
journal={arXiv preprint arXiv:2409.12191},
year={2024}
}
@article{Qwen-VL,
title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
journal={arXiv preprint arXiv:2308.12966},
year={2023}
}
Runs of unsloth Qwen2-VL-7B-Instruct-unsloth-bnb-4bit on huggingface.co
16.5K
Total runs
621
24-hour runs
2.4K
3-day runs
5.6K
7-day runs
10.5K
30-day runs
More Information About Qwen2-VL-7B-Instruct-unsloth-bnb-4bit huggingface.co Model
More Qwen2-VL-7B-Instruct-unsloth-bnb-4bit license Visit here:
Qwen2-VL-7B-Instruct-unsloth-bnb-4bit huggingface.co is an AI model on huggingface.co that provides Qwen2-VL-7B-Instruct-unsloth-bnb-4bit's model effect (), which can be used instantly with this unsloth Qwen2-VL-7B-Instruct-unsloth-bnb-4bit model. huggingface.co supports a free trial of the Qwen2-VL-7B-Instruct-unsloth-bnb-4bit model, and also provides paid use of the Qwen2-VL-7B-Instruct-unsloth-bnb-4bit. Support call Qwen2-VL-7B-Instruct-unsloth-bnb-4bit model through api, including Node.js, Python, http.
Qwen2-VL-7B-Instruct-unsloth-bnb-4bit huggingface.co is an online trial and call api platform, which integrates Qwen2-VL-7B-Instruct-unsloth-bnb-4bit's modeling effects, including api services, and provides a free online trial of Qwen2-VL-7B-Instruct-unsloth-bnb-4bit, you can try Qwen2-VL-7B-Instruct-unsloth-bnb-4bit online for free by clicking the link below.
unsloth Qwen2-VL-7B-Instruct-unsloth-bnb-4bit online free url in huggingface.co:
Qwen2-VL-7B-Instruct-unsloth-bnb-4bit is an open source model from GitHub that offers a free installation service, and any user can find Qwen2-VL-7B-Instruct-unsloth-bnb-4bit on GitHub to install. At the same time, huggingface.co provides the effect of Qwen2-VL-7B-Instruct-unsloth-bnb-4bit install, users can directly use Qwen2-VL-7B-Instruct-unsloth-bnb-4bit installed effect in huggingface.co for debugging and trial. It also supports api for free installation.
Qwen2-VL-7B-Instruct-unsloth-bnb-4bit install url in huggingface.co: